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The size correction without the z.p.e, terms is shown 
in Fig. 2. The curves in Fig. 1 and Fig. 2 coincide at high 
temperatures because the z.p.e, terms are relatively un- 
important. As the temperature decreases the correction 
without z.p.e, terms (Fig.2) increases, because the 
thermal contribution of the surface terms increases 
relative to the volume terms. This follows from the 
frequency distribution g(v) in which the volume term 
is proportional to v z and the surface term proportional 
to v. On further lowering of the temperature the cor- 
rection falls to zero since at these very low tempera- 
tures long wavelength modes which are possible in the 
large particles cannot exist in the small particle. 

The influence of ~ on the resulting curves is small. 
This is seen from Fig. 1, where the broken line is for 
7=0.923 whilst the other lines are for ~=0.973. In the 
other Figures 7 =0.973. 

For thin films the thickness correction is qualitatively 
similar to that for cubical particles as may be seen 
from Fig. 3. These curves include the B' terms which 
are the contributions of the low frequency modes omit- 
ted in the integrals. Because B' has been calculated 
with a thickness to length ratio of 10 -3, the curves are 
not as general as those for cubes. In particular this 
is the case for Nz= 10 and 33.3. For the thicker films 
the influence of B' is small. 

As expected, the correction for films is smaller than 
that for cubes with an edge length equal to the film 
thickness. At high temperatures it is somewhat larger 
than ½ of that for cubes. The correction without z.p.e. 
terms for films is uncertain for low temperatures. At  
high temperatures it is the same as that which includes 
the z.p.e, terms. As the temperature decreases it first 
increases and then decreases in a manner which is 
qualitatively similar to that for cubes. 

The author would like to thank Dr L. A. Vermeulen 
for frequent discussions and for reading the manu- 
script. 
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The Resolution Function in Neutron Diffraetometry. III. Experimental Determination 
and Properties of the 'Elastic Two-Crystal' Resolution Function* 

BY M.J. COOPER]" 
Materials Physics Division, A.E.R.E., Harwell, Berkshire, England 

AND R. NATHANS 

Brookhaven National Laboratory, Upton, N.Y.  11973, U.S.A. 

(Received 6 June 1968) 

The experimental determination of the resolution function of a two-crystal neutron diffractometer is 
discussed. The form of the Bragg reflexion profiles observed for a perfect crystal using conventional 
scanning modes is considered in detail and their application to the measurement of diffuse elastic 
scattering is discussed. 

1. Introduction 

In earlier papers we have discussed the derivations of 
the resolution function for a three-crystal neutron dif- 
fractometer (paper I; Cooper & Nathans, 1967) and 
for a two-crystal neutron diffractometer for elastic scat- 

* Work performed in part under the auspices of the U.S. 
Atomic Energy Commission. 

? Formerly Research Associate, Brookhaven National Labor- 
atory, Upton, N.Y, U.S.A. 

tering (paper II; Cooper & Nathans, 1968) in terms 
of a matrix notation involving the parameters of the 
system. 

Although the matrix formulation is convenient for 
calculating the resolution function for a particular set 
of Gaussian instrumental parameters, it does not give 
us any direct or simple indication of the form of the 
dependence of the resolution function on the various 
parameters, and the extraction of this information from 
the matrix elements becomes complex. In addition it 
does not give us a clear indication of how well we can 
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determine the resolution function experimentally. For 
these reasons we shall consider in detail the form of 
Bragg reflexion profiles observed for a perfect crystal 
using the conventional scanning modes of a two-crystal 
diffractometer, which enables us to calculate the prob- 
ability function at any point in reciprocal space. The 
resolution function can be determined experimentally 
by the measurement of such profiles and we shall dis- 
cuss the application of the resolution function to the 
measurement of diffuse scattering. 

Gaussian and the value of the resolution function at 
any point can be calculated from the expression for 
the appropriate scan. Contours of constant probability 
are ellipsoids and the orientation of these ellipsoids is 
also derived in the Appendix. In a later paper (paper 
IV, Cooper, 1968) we shall consider in detail the de- 
pendence of profiles measured with crystal angle ((o) 
and 0-20 scans, on the instrumental parameters and 
extend the analysis to the case of finite mosaic spread 
in the sample. 

2. Measurement  of  a Bragg reflexion 
from a perfect crystal 

As we pointed out in paper I, the resolution function 
can be determined experimentally by scanning through 
a Bragg reflexion from a perfect crystal and in the case 
of a two-crystal diffractometer it is only the dependence 
on the component of AQI[Q that we cannot determine 
exactly in this way. However, we will show that a cor- 
rection can be made if necessary. 

We shall use the same notation as before and define 
divergence angles and mosaic and collimation param- 
eters as before (see papers I and II). 

If the Bragg angle for the sample is OB, then the 
Bragg condition is given by: 

20S=20B (la) 
and 

A Q = A k ~ - A k I = 0 .  (lb) 

We can then derive the dependence of Akt, Y'z and 
6~ on 7~ and 6~ (the Bragg constraint) where 7' and 6' 
are the horizontal and vertical divergence angles with 
reference to the optimum paths for Bragg reflexion, 
and subscripts 1 and 2 refer to monochromator-to- 
sample and sample-to-detector regions respectively. 
We can then integrate over yt and 61 for any general 
position to give the value of the resolution function 
at the Bragg reciprocal lattice point. In the Appendix 
to the present paper we derive the Bragg constraint 
and carry out the integration for points on crystal 
angle, detector angle and compound scans. The inten- 
sity profiles predicted for these scans are, as expected, 

3. Features of  the resolution function 

The form of the resolution function can best be illus- 
trated by considering the locus of points at which the 
function has a given value, for example the resolution 
ellipsoid for which the probability is 50% (of R0). The 
AQz = 0 section of such an ellipsoid is shown in Fig. 1 
for a typical experimental arrangement. The section 
of the locus of 50% probability for neutrons in the 
monochromatized beam is also shown. This is also an 
ellipse and it can be shown that the angle gt between 
the longer principal axis and kz is given by the expres- 
sion 

tan2#, 

2 tan 0M (~-~ + -~-~) 

-- 1 1 1 1 4 . . . . . . . . . . .  (2) 
(~M + ~---~ + --~-~) -- ( - ~  + -~-~)tan20M 

For the case of relaxed in-pile collimation, ~0>>r/M, 
this reduces to 

2 tan OM 
tan 2#1 . . . . . .  (3) 

r/~ tan20M 1 +  e--2- -- 

If  the monochromator to sample collimation is also 
relaxed, el >> r/m, this then gives 

tan 2px ~ tan 20m. (4) 

Hence for completely relaxed collimation/z, = 0m and 
~, decreases as el/r/m becomes smaller. 

q 

(ooo )  ~ ~ ----- - - - -  ~ . _ . _ ~ " ~ ~  

Fig. 1. Sketch of reciprocal space showing the effects of finite collimation and mosaic spread in the monochromator .  The larger 
ellipse represents the termination of the wave vectors of the monochromated neutrons, with 50% of the maximum probability; 
the smaller ellipse represents the termination of the scattering vectors with 50% of the maximum probability (the resolution 
ellipse). The concentric circles represent contours of constant Iql about a reciprocal lattice point. 
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The shape of the resolution ellipsoid will depend on 
the value of Os. One principal axis of the horizontal 
ellipse (AQz=0) will be directed towards Q and the 
angle /z2 between these directions is derived in the 
Appendix (equation 50). However, the magnitude of 
the two principal axes in this plane will depend on 0s, 
such that at low values the resolution ellipsoid becomes 
disc-like in shape with the plane of the disc lying to- 
wards Q and AQz. As 0s increases, the horizontal ellipse 
becomes more circular and then at high values of Os 
becomes elongated and roughly perpendicular to Q. 
This change in shape arises mainly from geometrical 
considerations. An example of the type of curve found 
at low angles is shown in Fig. 2. This is a central hori- 
zontal section (AQz = 0) of the resolution function ob- 
tained experimentally for the magnetic ½~:z~ reflexion 
of KMnF3 (Os ~ 6 °), using a series of ~ and 20 scans, 
and shows a number of probability contours of equal 
interval. 

4. Application to diffuse scattering 

It may be seen that the shape of the resolution function 
can be exploited in the measurement of diffuse scat- 
tering by choosing a type of scan for which it is most 
favourable. For example, in Fig. 1, we show contours 
for critical magnetic scattering about a point in recip- 
rocal space and at small values of 0s a crystal ~0-scan, 
in which the crystal is rotated and the detector remains 
stationary, is clearly most advantageous since the reso- 
lution function will then traverse the reciprocal lattice 
point most rapidly, leading to the least distortion of 
the peak shape. (This is analogous to the mode of scan 
focusing for inelastic phonon peaks discussed in paper 
I.) This type of scan also has the advantage that since 
20s is fixed, the resolution is not varying during the 
scan. 

Since we are considering only the case of elastic scat- 
tering it is in theory always possible to determine the 
true resolution function of the diffractometer experi- 
mentally, subject to the approximation in the 20s de- 

...... kF__ _ 

I 

Fig. 2. AQz = 0  section of  an experimental ly  de te rmined  resolu- 
t ion funct ion  for  KMnF3,  showing loci of  equal probabi l i ty  
at  intervals of  0"2Pmax. 

pendence, whenever a perfect Bragg reflexion is avail- 
able at the appropriate scattering angle. In this case 
the theoretical intensity can be calculated directly from 
the cross section by numerical integration without in- 
voking any Gaussian approximations. For a perfect 
crystal sample we have: 

I(Q°) = I R(Q0+ AQ)a(Q0+ AQ)AQ . (53 

However, for a sample with finite mosaic spread we 
must first integrate the cross section over the mosaic 
spread, M(qm), where qm is the reciprocal lattice vector 
defining translation from the point of optimum Bragg 
reflexion (see equations (6) and (7) of paper II). 

I(Qo)= I { l a(Qo+AQ+qm) 

x M(qm)dqm } R(Qo+ AQ)AQ. (6) 

Similarly the resolution function determined using a 
Bragg reflexion from a sample with mosaic spread 
M'(qm) is given by: 

R'(Qo+AQ) = I M'(qm)R(Qo+AQ+qm)dqm. (7) 

The resolution function should therefore be determined 
using a crystal with as small a mosaic spread as pos- 
sible and with a Bragg reflexion having a 20 value as 
close as possible to that for which the true resolution 
function is required. 

If the sample itself has a Bragg reflexion at the re- 
quired angle, as for example in the case of critical 
magnetic scattering from an antiferromagnet (Cooper 
& Nathans, 1966), then this reflexion may be used to 
determine the resolution function directly. In this case 
M'(qm) =M(qm) and if this mosaic spread is small we 
may be justified in using the approximation for equa- 
tion (6): 

I(Qo)--- I a(Qo+AQ)R'(Qo+AQ)AQ, (8) 
d 

thus avoiding the necessity for unfolding the mosaic 
from the observed function. 

It should be emphasized that under these conditions 
the true experimental resolution function can be used 
whatever its form, and the theory using Gaussian ap- 
proximations is required only for the calculation of the 
resolution function at different scattering angles. The 
theoretical intensity can then be calculated from equa- 
tions (6) or (8) for any scattering cross-section and 
compared directly with the corresponding observed in- 
tensity. 

APPENDIX 
The Bragg constraint 

The derivation of the Bragg constraint has been out- 
lined above. If we consider 20s =20B and equate the 
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components of AQ to zero we obtain from equations 
(11) of paper II 

-x12 sin 0 8 + ( y 2 - y ~ )  cos 0 8 = 0  (9a) 

(Y2 +Y~) sin 0B=0 (9b) 
t • 

Z 2 - -  Z 1 = 0 (9c) 
where y' and z' are defined in terms of the divergence 
angles 7' and d' with reference to the optimum paths 
for Bragg reflexion, e.g. y~ = 7~kx. 

Hence the Bragg constraint is: 

X1 = -Yl  cot 08 (10a) 

Y2 = -Yl  (10b) 

z'z = z 1 . (10c) 

For any given setting we can relate the divergence 
angles for the collimators to 7' and 6'. The value of 
the resolution function is then given by 

R = RI¢ x R v  

= l~_ PH(Ak,,Tb72)dyx I~_ Pv(dl,O2)dzl (11) 

where the first integration is carried out subject to the 
Bragg constraint, and from paper II, equation (3) we 
have 

{ 1 [ ( (Ak i / ke )  tanOM+71)  2 
PH = PMPo exp -- 2- r/M 

+ .... + - -  + (12) 

1 d~ 
tan20Mr/~t 

+~-+ p~j}. (13) 

Table 1. Definitions 
Aj = 1/(~kkD 
B20 = I / ( Q 2 M r / ' 2 M + f l 2 0 k 2 D  
B~ = 1/(#jk~) 
Co = Ao(2 c o t  0B t an  0 i -  1) 
CI = H~(cot 08 tan 0 ~ -  1) 
D2n =C20+C21+A21+A22 
D2v = B20 + BEt + B22 
Eu =kz(H~C1 - AoCo- A21 + A22)/Dn 
Fzn =k2z(H2~+AZo+AZ 1 +A22)-E2H 
G = Q(B20 + B21 --  B22) / (2Dv)  
HIu  = 1/(rlMkl)  
J2  = QE(B2o+ B21)B22/D2 V 
Ke,  20 = EH~o -- L A 2 0  
L = k r A Z 2 / D  i~ 
L~; = k2IA22(C20 - AoCo + C21 - H M C 1  + 2A21)/D2H 
N 2 = k z i ( c 2 0  + C21 -}- AZl)AZz /D2 H 
Ro = 2~zPMPo/ (DHDv)  

f o r j ' = 0 ,  1, 2 

fo r  j =  1, 2 

S2(o, 20 -'~ F 2  H(t 92 -{- N 2 (  A20)  2 - 2q) A O L s  
$20,20 : S2 H(AO) 2 
$ 2 ~  = FZu  + 4 N  2 -  4 L s  
T = L s / F ~ t  

Intensity under optimum Bragg conditions 

For the case where 2 0 s = 2 0 8  and the sample is set to 
give the optimum intensity, the divergence angles 7' 
and d' will be the true divergence angles for the col- 
limators, i.e. 7 = 7', d = fi'. 

The notation used in the following sections is sum- 
marized in Table 1. It is convenient to write: 

1 1 
r/Mkz =HM ~ykr - A j  ( j=0 ,1 ,2 )  

1 1 
Q2 .,2.t~2z.2 =BE &kz - B j  ( j = l , 2 )  (14) 

M f f  M T IJ On. I 

Then from equations (10) and (12) we have 

1 2 ' s PH=PMPo exp {---~[HM(Y 1 cot OB tan O M - - Y l )  2 

+ A2y? + A2y? 

+ A2(y? cot OB tan OM--y~)2]} 

= __PMPo exp t "¢ - I r~2 . "2~ "~UHYl  f 

(15) 

(16) 

where 
0 2 =  2 2 Co+Cx +A~+A~ (17a) 

Co=A0(2 cot OB tan 0u- -  1) (17b) 

Q = HM( cot 08 tan OM -- 1). (17C) 

The resolution function is then given from equation 
(11) by: 

Ro=PMPo I_ooexp { - ½ D 2  yi2}dyl 

S x exp{ 1 2 -~(Bo+B~+B~)z i2}dz ;  (18) 
- 8  

2~PMPo 
- D ~ D v  (19) 

where 
2 2 D v = B o + B ~ + B ~  . (20) 

The intensity I0 is then proportional to R0. 

Horizontal crystal (q~) scan 

If we now rotate the crystal about a vertical axis, 
through an angle q9 from the optimum position, the 
measured intensity will be reduced. 

We can introduce the Bragg constraints as before. 
However, the optimum directions will be rotated 
through an angle ~0 so that we have the relations: 

71 ~---71--~0 7 2 :  7 2 - -  0 (21) 
giving 

PH = PMPo exp { - ½[H2[( cot 0B tan 0 i  -- 1)y~ + ~0ki] 2 
2 t + Al(ya-~okx)2+ A2z(y~ -{-~okI) 2 

+ A~[(2 cot 08 tan 0M-- 1)y~ + ~0ki]2]} (22) 
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= PMPo exp {-½[(Day; + Ea,;) 2 + F~oq} (23) 

where 
Ea=kx(HMCI+AoCo-A~+A~)/DH (24a) 

2 2 2 F H = k , ( H M + A 2 + A 2 + A 2 ) - E  2 . (24b) 

Integration over dye, dz~ then gives 

I~=Io exp {-½F2~02}. (25) 

Hence I~ is a Gaussian function of (p with characteristic 
width 1/Fa. 

Vertical crystal 0¢) scan 

If the crystal is rotated about a horizontal axis per- 
pendicular to the scattering vector, through an angle 
~v, we have the relations: 

t~ 1 = d 1 - -  ~ '  t~ 2 = d 2 -'[- _. ~,/ i (26) 

so that 

Pv = exp { 1 2 -~[ (B o + B 2) (z I - ½Qgt)2 
2 ' + B2(z 1 + ½Qgt)2]} (27) 

- e x p {  * ' - -~[(Dvza-G~t)z+j2N2]} (28) 

where Dv is defined by equation (20), 

G= Q(B2 + B 2 -  B2)/(2Dv) (29a) 
and 

2 2 2 2 
j 2  = Q ( B o + B 1 ) B 2  

B2 + B2 + B22 (29b) 

Integration over dye, dz[ then gives 

I~,= I0 exp {_½j2~,2}. (30) 

Hence I~, is a Gaussian function of gt with character- 
istic width 1/J. 

Detector (20) scan 

If we keep the crystal fixed and rotate the detector 
through an angle A20 we have the relations 

y~=y~ y2=Y'2+kzA20 (31) 
so that 

Pa=PMPoexp {_½[(C2+Cl+A1)Y 2 ,2 

+ A2(y~-kxA20)2]} (32) 

-- PMP0 exp { -  ½[(Da y~ - LA20) 2 + NZ(A20)2]} 

(33) 
where 

L=kIA2/DH (34a) 

Aa)A2 U 2 =  ~(C~° + C~ + " 
C ~ +  2 2 CI +AI +A2 (34b) 

and Co, CI and D a  are defined by equations (17). 
Integration over dye, dz~ then gives 

I20=Io exp {-½NZ(A20) 2} (35) 

which is a Gaussian function of A20 with character- 
istic width 1/N. 

As stated previously this type of scan will not meas- 
ure the true resolution function, which would be given 
by keeping the detector fixed and moving the Bragg 
reflexion in reciprocal space. To arrive at an equivalent 
position we should have to move the detector through 
an arc of -kxA20,  i.e. the new scattering angle would 
be 20s-A20 .  The above analysis would still be correct 
except that Co and C1 would then be a function of A20, 
namely 

Co=Ao[2 cot (Os-½A20) tan Oi--  1] (36a) 

C1 = HM[ cot (Os-½A20) tan O v -  1]. (36b) 

Hence the approximation involved in measuring the 
resolution function using a detector scan will depend 
on the range of A20 and the relation between Os and OM. 

General position (9,V, 20) 

Since the vertical and horizontal terms are independent, 
the ~ dependence is given simply by equation (30). 

For the horizontal term we have 

~)1 : ~1; - -  ~okz (37a) 

72 =) ,2-  (~o - A20)kz. (37b) 
Hence 

Pa=PMPo{--½[H2[( cot OB tan OM-- 1)y~ 2 + ~okI] 2 
+ (y~ - ~okz)ZA 2 + (y'~ + (okx - d2Oki)ZA2 2 

+A2[(2 cot 08 tan OM-- 1)y; + ~0ki]2]} (38) 

1 =PMPoexp {--2[(DaYx +K~,2o)2+$220]} (39) 

where 

K~,2o = EH~O -- LA20 (40a) 

S~o.202 = F 2  ~o2.k_ N 2 ( A 2 0 ) 2  - 2~oAOLs (40b) 

and 

L s =  2 2 2 klA2(Co- AoCo+ C 2 -  HMCI + 2A2)/D 2 . (40c) 

DH, EH, Fa, L and Nare  defined in equations (17), (24) 
and (34). Integration over dye, dz~ therefore gives 

1 2  I~,~,,2o=Io exp {-~S~,20} exp {-½J2~v2}. (41) 

Let us now consider a ~0 scan at constant 20. We 
can write 

$2.20= [ r a t p -  T(A20)]Z+(N 2 -  T 2) (A20) 2 (42) 

where 
T= Ls/Fa . (43) 

The intensity is therefore proportional to 

exp { -  ½[Fatp- T(A20)] 2} exp { -½(U 2 -  T 2) (d20) 2} 

(44) 



624 THE R E S O L U T I O N  F U N C T I O N  IN N E U T R O N  D I F F R A C T O M E T R Y .  I I I  

which is a Gaussian function of ~ with a characteristic 
T 

width 1/FH and a maximum at ~o= ~ A20. 

Similar results are obtained for a 20 scan at constant 
~v. 

0-20  Scan 

For a 0-20 scan, o=AO, so that from equation (40b) 
we have 

S~,:o=S~(AO) z, (45) 

where 
2 2 . (46) S n =  F x +  4N z -  4Ls 

The intensity is therefore given by 

lo,2o = Io exp {-½S~(AO)2} , (47) 

which is a Gaussian function of AO with characteristic 
width 1/Sn. 

Orientation of  the resolution ellipsoid 

The results of the previous sections enable us to deter- 
mine the size and orientation of the resolution ellip- 
soid. If we define orthogonal axes as before (paper II) 

with AQz parallel to Q and AQz vertical, we can derive 
the resolution ellipsoid from equations (25), (30), (35) 
and (47) to be: 

where 

aAQ~ + bAQ~ + cAQ~ + 2hAQzAQu= 1 (48) 

a=S~/  cos20s (49a) 

b = F~/sin20s (49b) 

c = j2/sin20s (49c) 

h=(2Ls-F~)/(  sin Os cos Os) (49d) 

and the angles p2 made by the principal axes to Q are 
given by tan/z2=m~ ( j =  1, 2, or 3), where ml and m2 
are given by the roots of the equation 

and m3 = oo. 

hm2+m(a-b)-h=O 
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The Resolution Function in Neutron Diffraetometry 
IV. Application of the Resolution Function to the Measurement of Bragg Peaks* 

BY M.J .  COOPERt 

Materials Physics Division, A.E.R.E., Harwell, Berks., England 

(Received 6 June 1968) 

The application of the resolution function of a two-crystal neutron diffractometer to the measurement 
of Bragg peaks is discussed in detail and experimental measurements of peak widths are compared 
with theoretical predictions. 

1. Introduction 

In the previous paper (part III: Cooper & Nathans, 
1968) we derived the form of various scans through 
a Bragg peak for a perfect crystal sample in order to 
demonstrate the use of experimental Bragg profile 
measurements in determining the resolution function 
of a two-crystal neutron diffractometer. In the present 
paper we shall examine more closely the dependence 
of these scans on the instrumental parameters, con- 

* Work performed in part under the auspices of the U.S. 
Atomic Energy Commission. 

t Formerly Research Associate, Brookhaven National 
Laboratory, N.Y., U.S.A. 

sidering such factors as focusing effects, and extend 
the analysis to the case of Bragg peaks for imperfect 
single crystals. Experimental results which support this 
analysis are also given. 

2. Crystal (9) scans 

(a) Perfect sample 
The intensity observed when a perfect sample has 

been rotated through an angle ~ from the optimum 
setting for the measurement of a Bragg reflexion has 
been derived in equation (25) of paper III. The char- 
acteristic width of a ~-scan is 40 = 1/Fn, where FH is 
defined by equation (24b) of paper III. 


